Photophysical and calorimetric investigation on the structural reorganization of poly(A) by phenothiazinium dyes azure A and azure B.
نویسندگان
چکیده
Poly(A) has significant relevance to mRNA stability, protein synthesis and cancer biology. The ability of two phenothiazinium dyes azure A (AA) and azure B (AB) to bind single-stranded poly(A) was studied by spectroscopic and calorimetric techniques. Strong binding of the dyes and the higher affinity of AA over AB were ascertained from absorbance and fluorescence experiments. Significant perturbation of the circular dichroism spectrum of poly(A) in the presence of these molecules with formation of induced CD bands in the 300-700 nm region was observed. Strong emission polarization of the bound dyes and strong energy transfer from the adenine base pairs of poly(A) suggested intercalative binding to poly(A). Intercalative binding was confirmed from fluorescence quenching experiments and was predominantly entropy driven as evidenced from isothermal titration calorimetry data. The negative values of heat capacity indicated involvement of hydrophobic forces and enthalpy-entropy compensation suggested noncovalent interactions in the complexation for both the dyes. Poly(A) formed a self-assembled structure on the binding of both the dyes that was more favored under higher salt conditions. New insights in terms of spectroscopic and thermodynamic aspects into the self-structure formation of poly(A) by two new phenothiazinium dyes that may lead to structural and functional damage of mRNA are revealed from these studies.
منابع مشابه
Exploring the interaction of phenothiazinium dyes methylene blue, new methylene blue, azure A and azure B with tRNAPhe: spectroscopic, thermodynamic, voltammetric and molecular modeling approach.
This study focuses on the understanding of the interaction of phenothiazinium dyes methylene blue (MB), new methylene blue (NMB), azure A (AZA) and azure B (AZB) with tRNAPhe with particular emphasis on deciphering the mode and energetics of the binding. Strong intercalative binding to tRNAPhe was observed for MB, NMB and AZB, bound by a partial intercalative mode. AZA has shown groove binding ...
متن کاملPotentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion.
Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensiti...
متن کاملPhotochemical degradation of azure-b with sulphate radical ion generated by peroxydisulphate ion with cupric ion
In this paper, the photochemical degradation of azure-b by Cu2+/S2O82− process has beenpresented. Cu2+ as photocatalyst and S2O82− ion as photooxidant used in this process. Atextremely low concentrations, cupric ion showed true catalytic activity in the overall process.The influence of various parameters on the performance of the treatment process has beenconsidered, such as pH, concentration o...
متن کاملUse of semi - conducting lead sulfide for degradation of azure - B : An eco - friendly process
Different methods have been adopted for the removal and degradation of dyes from effluents of textile, dyeing and printing industries. These methods have their own merits and drawbacks. In the present investigation, Lead sulfide has been used as a photocatalyst for the degradation of azure-B. The effect of different parameters like the pH, concentration of dye, amount of semiconductor and light...
متن کاملSpectrophotometric Studies of Penetration of Dyes
Spectrophotometric measurements show that the non-medullated nerve of a lobster claw is capable of absorbing methylene blue, azure B, or acid fuchsin dissolved in sea water but this does not necessarily imply that the dyes penetrate into the interior of the nerve.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2014